THE SUNSPOT CYCLE AND C24

Guest post by Ulric Lyons

THEORY:

1) The SS cycle is caused by heliocentric syzygies of Jupiter, Earth and Venus. The average time between the tightest alignments over 100yrs. is 11.086yrs. The alignments alternate between E opposite V in line with J in one cycle, and E and V together in line with J, in the next cycle, in sync with the magnetic reversal of the Sun.

2) The position of the center of each maximum moves relative to the tightest alignments, earlier if the cycle is augmented, and later if the cycle is diminished. C3 to C8 is a good example of this.

3) The amplitude of each cycle is governed by a) the relative positions of Jupiter, Saturn and Uranus, and, b) the positions of E and V in relation to J, S and U.

4) The peaks on every cycle are largely due to syzygies of E+V, J+E, J+V and stelliums of all three. Hence the SS record can be seen to be a recording of these alignments, which usually can be correlated to stronger monthly temperature anomalies.

PROJECTIONS:

Maximum center for C24 estimated at 1yr. before the alignment center = early 2013. It will be augmented from 2010 to 2013, with peaks above C23, strongly in 2010, with August and October being likely dates for large solar flares.

The relative positions of U,S,J,E and V start to fall into diminished configurations from late 2013/early 2014, leading to a lower sunspot count in second half of the cycle. This will be accompanied by increasingly lower global temperatures from 2014 to 2020. A good measure of this can be seen by looking back 179yrs on the CET series:
http://www.metoffice.gov.uk/research/hadleycentre/CR_data/Daily/HadCET_act.txt
ie., lookat years 1835 to 1841 for 2014 to 2020.

Continue reading

Advertisements

Linkages between solar activity, climate predictability and water resource development

An interesting new paper may point to a way of improving on Dr Landscheidt’s methods:

Linkages between solar activity, climate predictability and water resource development
by W J R Alexander, F Bailey, D B Bredenkamp, A van der Merwe and N Willemse

Abstract:

This study is based on the numerical analysis of the properties of routinely observed hydrometeorological data which in South Africa alone is collected at a rate of more than half a million station days per year, with some records approaching 100 continuous years in length. The analysis of this data demonstrates an unequivocal synchronous linkage between these processes in South Africa and elsewhere, and solar activity. This confirms observations and reports by others in many countries during the past 150 years. It is also shown with a high degree of assurance that there is a synchronous linkage between the statistically significant, 21-year periodicity in these processes and the acceleration and deceleration of the sun as it moves through galactic space. Despite a diligent search, no evidence could be found of trends in the data that could be attributed to human activities. It is essential that this information be accommodated in water resource development and operation procedures in the years ahead.

I will expand on this as soon as I find the time.

New Little Ice Age Instead of Global Warming?

To follow up on my previous post, I thought it might be good to examine the paper:
New Little Ice Age Instead of Global Warming?

Abstract: Analysis of the sun’s varying activity in the last two millennia indicates that contrary to the IPCC’s speculation about man-made global warming as high as 5.8° C within the next hundred years, a long period of cool climate with its coldest phase around 2030 is to be expected. It is shown that minima in the 80 to 90-year Gleissberg cycle of solar activity, coinciding with periods of cool climate on Earth, are consistently linked to an 83-year cycle in the change of the rotary force driving the sun’s oscillatory motion about the centre of mass of the solar system. As the future course of this cycle and its amplitudes can be computed, it can be seen that the Gleissberg minimum around 2030 and another one around 2200 will be of the Maunder minimum type accompanied by severe cooling on Earth. This forecast should prove skillful as other long-range forecasts of climate phenomena, based on cycles in the sun’s orbital motion, have turned out correct as for instance the prediction of the last three El Niños years before the respective event.

If Dr. Landscheidt is correct about this, we are about to enter an extended period of much reduced solar activity and therefore an extended period of global cooling, which will offer the first real world test of the IPCC’s CO2 forced global warming claims. On the downside of this, a return to climate conditions not experienced since about 1670 by the year 2030 will bring much hardship to millions, as many of the world’s foodbowls fail due to extreme cold, while demand for fossil fuels will increase just so people can survive the extreme cold in higher latitudes.

Unfortunately, the current obsession with global warming pseudoscience combined with hefty increases in the price of carbon use being planned and/or implemented in various countries means that very few will be prepared for the sudden significant downturn in temperatures likely to begin manifesting during the next few years, and as is so often the case, the poor will be the ones that suffer most due to the incompetence of certain prominent scientists prepared to over state the soundness of their science on the basis of a prejudicial belief, combined with a well orchestrated media campaign that has convinced much of the public and policymakers of the need to make huge sacrifices in order to ‘save the planet’ from a human induced fever that in fact probably only exists in the minds of the ‘true believers’.
Continue reading

Dr Landscheidt’s Solar Cycle 24 Prediction

As we approach Solar minimum, I thought it might be worthwhile to examine what Dr Landscheidt had to say about future of Solar Cycles and how things look for upcoming solar cycle 24.

Perhaps the best approach is to take a close look at this definitive paper:

EXTREMA IN SUNSPOT CYCLE LINKED TO SUN’S MOTION
THEODOR LANDSCHEIDT
(Received 21 May 1999; accepted 13 September 1999)
Abstract.

Partitions of 178.8-year intervals between instances of retrograde motion in the Sun’s oscillation about the center of mass of the solar system seem to provide synchronization points for the timing of minima and maxima in the 11 -year sunspot cycle. In the investigated period 1632-1990, the statistical significance of the relationship goes beyond the level P = 0.001. The extrapolation of the observed pattern points to sunspot maxima around 2000.6 and 2011.8. If a further connection with long-range variations in sunspot intensity proves reliable, four to five weak sunspot cycles (R < 80) are to be expected after cycle 23 with medium strength (R ~ 100).

The part I bolded is a most interesting prediction of upcoming solar activity.

As we have not yet reached solar minimum, and no high latitude cycle 24 spots have yet appeared, we may still be 12 to 18 months from minimum if recent cycles are anything to go by, and I venture a speculation that if no cycle 24 spots appear in the very near future then perhaps Dr Landscheidt should have also mentioned the other possible date of the upcoming solar max using his methods, 2013.6 (see details of his methods in the paper), which if it turns out to be true means a very long cycle which could indicate a very low sunspot max.
Continue reading